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The Marcus equation for electron transfer has been widely applied to atom transfer reactions, but the equation
does not seem to work well for very endothermic or very exothermic reactions. In this paper, a modified
model is proposed. The modified model assumes that the potential energy surface can be written as a sum of
the potentials for the individual molecules and an intermolecular potential that keeps the reactants apart. The
activation barrier predicted by the model is within 3 kcal/mol of that predicted by the Marcus electron transfer
equation when-1 e ∆Hr/4E

a
°e 1, where∆Hr is the heat of reaction andE

a
° is the intrinsic barrier.

However, there are significant deviations when∆Hr/4E
a
° < -1 and when∆Hr/4E

a
° > 1. The modified model

predicts that the activation barrier should equal∆Hr/4E
a
° in the very endothermic limit, (i.e.,∆Hr/4E

a
° > 1),

while the Marcus electron transfer equation predicts that the activation energy,Ea, should diverge from∆Hr.
Data shows thatEa approaches∆Hr. The modified model predicts that the activation barrier goes to zero for
very exothermic reactions, (i.e.,∆Hr/Ea

° < -1) while the Marcus electron transfer equation predicts large
barriers. Data shows, though, that the barriers approach zero. We also compare to the Marcus hyperbolic
cosine expression and find that the modified model is within 3 kcal/mol of the Marcus hyperbolic cosine
expression over the entire energy range. The modified model predicts that the barriers to reaction are associated
with Pauli repulsions and not with bond stretching. That prediction agrees with recent ab initio calculations,
and the VB model but not with the intersecting parabola model. Overall, the modified model seems to extend
the original Marcus equation to very endothermic and very exothermic reactions. Also, it gives predictions
similar to the Marcus hyperbolic cosine expression over the entire energy range.

I. Introduction

Several years ago, Marcus1,2 derived what is now called the
Marcus equation to relate the heat of reaction,∆Hr, to the
activation barrier,Ea, for electron transfer reactions:

where E
a
° is a constant. Murdoch3-5 and Shaik et al.6 also

showed that the position of the transition state,ø‡, is given by

Equation 1 has been widely applied to electron transfer
reactions and generally fits the data quite well. In electron
transfer reactions, one often observes inverted behavior, as
expected from the Marcus equation. Marcus inverted behavior
is also often seen in intermolecular energy transfer rates and
other de-excitation processes.

Given the success of the Marcus equation for electron transfer
and energy transfer reactions, many investigators have tried to
extend the results to atom transfer reactions. Murdoch,3-5 Sutin
et al.,7,8 Jensen,9 and Albery et al.10,11 derived an analogue of
the Marcus equation based on the curve-crossing model of
Polanyi and Evans.12 The idea is that the system goes up a
potential energy contour and then down again, as indicated in

Figure 1. If one assumes parabolic potentials, one can derive
eqs 1 and 2. Marcus2,13 pointed out that this approximation for
atom transfer reactions is probably in error and derived an
alternative equation for atom transfer.

Nevertheless, eq 1 is often used for atom transfer reactions.
Guthrie14 has also proposed a multidimensional extension of
eq 1. The details are different, but the results are qualitatively
the same.

Experimentally, though, atom transfer reactions look different
than electron transfer reactions. It is unusual to observe Marcus
inverted behavior in atom transfer reactions. For example,
Westley15 has an extensive table of activation barriers for
reactions of interest to combustion. Figure 2 is a plot of the
activation barriers versus the heat of reaction for 478 open-
shell radical exchange reactions of the form:

The actual reactions are listed in the Supporting Information.
The predictions of the Marcus equation are included for
comparison. In the Marcus plot, we used a single value ofEa°,
but in reality, the intrinsic barriers as estimated from identity
reactions vary from 7 to 12 kcal. We used the average value of
Ea

o to generate a single Marcus plot.
The data shows thatEa approaches zero when∆Hr is less

than -20 kcal/mol,Ea approaches∆Hr when ∆Hr is greater* To whom correspondence should be addressed
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than 50 kcal/mol, andEa varies smoothly in between. In contrast,
the Marcus electron transfer equation predicts thatEa grows to
infinity as ∆Hr approaches-∞. Further, the Marcus electron-
transfer equation predicts thatEa diverges from∆Hr when∆Hr

grows to+∞. If we expand our search and consider all of the
reactions in the compendiums of Westley,15 Benson,16 and
Kondrat’ev,17 we find that there are no highly exothermic
reactions listed in these compendia with large activation barriers.
While it is theoretically possible for an exothermic atom transfer
reaction to have a large barrier due to a steric repulsion, the
number of examples in the literature is small.Ea approaches
∆Hr for large endothermic values of∆Hr in all of the data in
Figure 2 and all of the other data in Westley et al.,15 Benson,16

and Kondrat’ev.15 However, eq 1 predicts thatEa diverges from
∆Hr at large∆Hr.

Equation 3 does go to the correct result in the limit of very
endothermic and very exothermic reactions. However, it has
not been extensively used in the literature.

Another weakness is that eq 2 does not correctly predict the
position of the transition state. For example, Figure 3 compares
Lee and Masel’s18,19 ab initio calculations ofø‡ to those
predicted from eq 2 for a series of reactions of the form

Notice that there is little agreement between the predictions of
eq 2 and the ab initio calculations.

Such a result is not surprising. The Marcus equation was
originally derived for electron transfer reactions. Cohen and

Marcus13 examined the application of the Marcus equation to
atom transfer reactions. They found that the Marcus equation
works when-4Ea° < ∆Hr < 4E

a
°, but the assumptions in the

equation fail in cases where-4E
a
° > ∆Hr or 4E

a
° < ∆Hr (i.e.,

very exothermic of very endothermic reactions). Cohen and
Marcus suggested that eq 3 would work much better for atom
transfer reactions. However, eq 3 has not been extensively cited
in the literature.

The object of this paper is to find a modified equation that
extends the original Marcus equation to very endothermic or
very exothermic reactions. Our approach will be to build on
some work Polanyi et al.20-23 did years ago to understand the
potential energy surfaces for chemical reactions which has been
expanded by many subsequent investigators. The method starts
by writing V(Rh), the potential energy surface for the reaction A
+ BC f AB + C as

whereVAB is the potential energy surface for an AB molecule
in the absence of C,VBC is the potential energy surface for a
BC molecule in the absence of A, andVI is an interaction energy.
Kuntz et al.23 proposed that one could simplify eq 6 by averaging
the potentials over all of the internal coordinates and only
examining the bonds that break and form. According to Kuntz
et al., the potential energy surface,V, for a simple atom transfer
reaction can be written as a sum ofVB, the potential for the
bond that breaks,VF the potential for the bonds that form, and
Vr, the intermolecular potential between the reactants.

In eq 7, the subscript F refers to the bond that forms during the
reaction (i.e., the R-H bond in reaction 4), while the subscript
B refers to the bond that breaks during the reaction, andrF and
rB are the lengths of the bonds that form and break.

In this paper, we use eq 7 to derive a simple approximation
for the position and energy of the transition state. Our approach
will follow closely Murdoch’s3-5 derivation of the Marcus
equation. We will fit empirical forms toVF, VB, and Vr and
then use the results to derive an expression for the activation
barrier and the position of the transition state. We will then
compare the approximation to ab initio calculations of the

Figure 1. Changes in energy as reaction proceeds according to the
curve-crossing model.

Figure 2. Activation barriers for 478 reactions of the form R-H +
R′ f R + H-R′. Results of Westly.15 The predictions of eq 1 with
Ea° ) 9 kcal/mol are included for comparison.

H + CH3R f CH4 + R (5)

Figure 3. Comparison of the position of the transition state predicted
by eq 2 to Lee and Masel’s G-218,19 calculations for a number of
reactions of the form H+ CH3R f CH4 + R with R ) CH3, C2H5,
CH2CF3, CH2CN, CH2C2H5.

V(Rh) ) VAB + VBC + VI (6)

V(rF,rB) ) VF(rF) + VB(rB) + Vr(rF,rB) (7)

7048 J. Phys. Chem. A, Vol. 103, No. 35, 1999 Blowers and Masel



transition state position and energy for a variety of reactions,
and to data for the variation ofEa with heat of reaction.

II. The Potential

First, we need to get some approximations toVF, VB, andVr.
In a recent paper,18 we have fit equations to our potential energy
surfaces for several reactions of the form in eq 4. We find that
we can fit the ab initio calculations to the model if we assume
that VF and VB are the energy to stretch bonds andVr is
associated with the Pauli repulsions to bring the reactants close
together.

According to our ab initio calculations18,19,24-27 and work of
previous investigators,33,34,37the Pauli repulsions between the
electrons in the reactants play a significant role in the barrier
to reaction. For example, Figure 4 shows a plot of the orbital
distortions that occur during the reaction H+ H2 f H2 + H
calculated as described in our recent work.18,19 Notice that, as
the reaction occurs, the orbitals on the hydrogen and H2 distort.
The orbital distortions are associated with the Pauli repulsions
that cause diffuse and polarization functions to mix with the
ground state during reaction. According to our ab initio
calculations26,27 and Shaik’s VB calculations,33,34 the Pauli
repulsions are the main reason for barriers in the reactions in
Figure 2.

Bernstein and Muckerman28 show that one can approximate
the Pauli repulsions by

whereV0, R3, and R4 are constants. We have calculated the
potential for the interaction of a hydrogen atom with an ethane
at the G-2 level. That potential also fits eq 8 at distances
comparable to those in reactions.

In this paper, we will make the ad hoc assumption thatVr )
VPauli. This assumption is not justified theoretically. In particular,
previous investigators35-38 have found that ionic structures are
often important in transition states for reactions.

One would also expect that the form in eq 8 would not
necessarily be applicable for the interaction of open-shell

systems. However, the approach here is to make the assumption
anyway, and see if a useful result is obtained.

An additional ad hoc assumption is thatVF andVB are given
by Morse potentials:

wherewF andwB are the bond energies of the bonds that form
and break during the reaction,rF andrB are the lengths of these
bonds,rB,equandrF,equare the equilibrium bond lengths, andR1

andR2 are constants. Combining eqs 7-9 yields:

Next, it is useful to derive an equation for the saddle point
energy in eq 10. A detailed derivation is given in the Supporting
Information. The result for the special case whereR1 ) R3 and
R2 ) R4 is

where E‡, is the energy of the saddle point relative to the
reactants,Ea° is intrinsic activation barrier for the reaction,
∆Hr is the heat of reaction,w0 is the average bond energy, i.e.,

andVP is the strength of the Pauli repulsions at the transition

Figure 4. Orbital pictures for H′ + H2 f H′H + H along the reaction coordinate. The energies and bond lengths are calculated at the CCSD-
(T)/6-311++G(3df, 3pd) level.

VPauli ) V0 exp(-R3rF - R4rB) (8)

VF ) wF{exp(R1(rF,equ- rF)) - 1}2 - wF

VB ) wB{exp(R2(rB,equ- rB)) - 1}2 (9)

V(rF,rB) ) wF{exp(R1(rF,equ- rF)) - 1}2 - wF +

wB{exp(R2(rB,equ- rB)) - 1}2 + V0 exp(-R3rF - R4rB)
(10)

E‡ )

{0 if
∆Hr

4Ea
0

< -1

(w0 + 0.5∆Hr)(VP - 2w0 + ∆Hr)
2

((VP)
2 - 4(w0)

2 + (∆Hr)
2)

if -1 e
∆Hr

4Ea°
e 1

∆Hr if
∆Hr

4Ea°
> 1

(11)

w0 ) (wF + wB)/2 (12)
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state. For future reference, it is also important to note

Equation 13 allows one to calculateVP from E
a
° estimated via

identity reactions.
Later in the paper, we will also need a few other variables.

First, it is useful to also defineøF
‡, the dimensionless position

of the transition state for the forward reaction, by

wherenF
‡ and nB

‡ are the Pauling bond orders for the forming
and breaking bond at the transition state. It is also useful to
defineEbond, the change in the total bond energy of the system
in moving from the reactants to the transition state. Equations
for øF

‡ andEbond are given in the Supporting Information.

IV. Qualitative Features of the Model

Figure 5 is a plot ofE‡ from eq 11 vs∆Hr for some typical
values of the parameters. According to the model,E‡ is zero
for very exothermic reactions, approaches∆Hr for very endot-
hermic reactions, and varies smoothly in between. The model
is virtually indistinguishable from the Marcus electron transfer
equation when-36 kcal/mole ∆Hr e 36 kcal/mol, i.e., when
-1 e ∆Hr/4Ea° e 1. However, there are differences for very
exothermic and very endothermic reactions. The Marcus electron
transfer equation predicts that very endothermic reactions should
have large activation barriers. However, the model here predicts
that the barrier should approach zero. Also, the Marcus electron
transfer equation predicts thatEA grows parabolically with∆Hr

at large∆Hr. However, the model in this paper predicts thatE‡

) ∆Hr for very endothermic reactions instead.
Figure 5 also compares the predictions of eq 11 to those of

eq 3, Marcus’ hyperbolic cosine result. Notice that the activation
barriers predicted by our equation are virtually identical to
Marcus’ hyperbolic cosine expression, even though the physics
in our expression is different than that used to derive Marcus’
result. This result indicates that the variation in the activation
barrier is insensitive to the details of the model, and that makes
the expressions very useful.

Figure 6 compares the predictions of eq 11 to the data in

Figure 2. A line for eq 3 is also shown, although the line to eq
3 is indistinguishable from that for eq 11. As in Figure 2, we
assumeEa° ) 9 kcal andw0 ) 120 kcal/mol. In reality,E

a
° and

w0 will vary over the data set. However, we ignored the
variations to keep everything compatible with Figure 2.

Notice that eq 11 follows the trends in the data much more
closely than the Marcus electron transfer equation.E‡ varies
linearly with∆Hr at large∆Hr, andE‡ is zero at low∆Hr. There
is no inverted region in either the data or the model.

Figure 7 compares the model here to a different empirical
approximation.

The lines in the figure are calculated via eq 11, while the points
are calculated from eq 15. Equation 15 is not exact, but it does
fit eq 11 to within 3 kcal/mol under all conditions we have
examined. Consequently, it appears that the model here predicts
activation barriers that are very similar to those from the Marcus
electron transfer equation when-1 e ∆Hr/4Ea° e 1. Still, the
predicted activation barriers are quite different than those
predicted by the Marcus electron transfer equation when∆Hr/
4E

a
° is either less than-1 or greater than 1.

Figure 8 shows how the predictions of the model here change
as we fix E

a
° and varyw0. There are six values ofw0 in the

Figure 5. Plot of the height of the barrierE‡ as a function of the heat
of reaction∆Hr for an average bond strength,w0 ) 110 kcal/mol,Ea°
) 9 kcal/mol, andR1 ) R3 andR2 ) R4 compared to (a) the Marcus
electron transfer and (b) eq 3.

VP ) 2w0(w0 + Ea°
w0 - Ea°) (13)

øF
‡ )

nF
‡

nF
‡ + nB

‡
(14)

Figure 6. Comparison of the trends in Figure 5 to the data in Figure
2. The predictions of the Marcus equation for identical parameters are
included in the comparisons.

Figure 7. Variation in the activation energy calculated via eq 15
(points) and eq 11 (lines) forw0 ) 120 kcal/mol,R1 ) R3 andR2 ) R4

and various values ofE
a
°.

Ea
‡ ) {0 for ∆Hr/4Ea° < -1

Ea° (1 + ∆Hr/4Ea°)
2 for -1 e ∆Hr/4Ea° e 1

∆Hr for ∆Hr/4Ea° > 1
(15)
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figure, but the six plots differ by such a small amount that the
various lines merge. Consequently, even thoughw0 appears in
our model, the predicted activation barriers are almost inde-
pendent ofw0 over a wide range.

Variations inw0 do, however, change the intrinsic barrier.
Figure 9 shows a plot of the intrinsic activation barrier as a
function ofw0 with VP ) 400 kcal/mol,R1 ) R3, andR2 ) R4.
Notice that the intrinsic barrier to reaction increases, reaches a
maximum, and then decreases again with increasingw0. The
implication of Figure 9 is that, under some circumstances, it
costs less energy to break a strong bond than to break a weak
bond. This trend is entirely different from the curve-crossing
model. In the curve crossing model,EA increases linearly with
w0.

Figure 9 also shows the results of Glukhovtsev et al.’s30,31

ab initio calculations of the central barrier for the identity
reactions:

Notice that the central barrier for reaction 16 increases before
decreasing with increasing bond energy, in qualitative agreement

with eq 11. Equation 11 does not fit exactly because the
X′CF3X- potential has a couloumbic attraction that is absent
from eq 11. Still the qualitative trends from eq 11 are that there
is a maximum in activation energy at intermediate bond
strengths in agreement with Glukhovtsev’s ab initio calculations
for the reactions of the form in eq 16.

The decrease inE
a
° with increasing bond energy occurs

because the transition state gets tighter asw0 increases. Figure
10 shows hownB

‡, the bond order of the breaking bond at the
transition state, changes asw0 increases. Notice that, whenw0

is small, the transition state is very extended (i.e., loose) so
that bonds have to stretch significantly before the reaction
occurs. However, asw0 increases, the bond in the transition
state shortens. It works out that more bond order is conserved
at the transition state whenw0 is large rather than when it is
small. The extra bond order causes the intrinsic activation energy
to decrease in Figure 10.

Physically, the size of the transition state is determined by
the ratio of the strength of the Pauli repulsion to the strength of
the bond that breaks. As the Pauli repulsions increase, the
transition state gets larger. Asw0 increases, it gets harder to
stretch the bonds so the transition state distance decreases.
According to the model here, the size of the transition state is
determined by a balance between the bond energy and the Pauli
repulsions. Strong bonds make the transition state tighter, which
causes the drop inE

a
° at largew0 seen in Figure 9.

So far, we have assumed thatVp is a constant. In most
chemical reactions, when you change the strength of the bonds,
you also change the Pauli repulsions. Still,Vp can vary
independently of the bond strength by careful substitutions in
the reaction molecule. For example, if one replaces one of the
methyl hydrogens in reaction 5 with atert-butyl group, the Pauli
repulsions will go up even thoughw0 goes down. Therefore,
one can sensibly discuss the idea that the Pauli repulsions can
be varied independently of the bond strength.

Figure 11 is a plot of the intrinsic activation barrier,E
a
°, as

a function ofVp, the strength of the Pauli repulsions, withR1 )
R3, R2 ) R4, andw0 ) 120 kcal/mol. The intrinsic activation
energy starts at 0 kcal/mol whenVp ) 0. It stays at zero until
VP ) 240 kcal/mol and then rises nonlinearly. The intrinsic
activation barrier whenVp ) 600 is 51.4 kcal/mol.

Figure 8. Variation in the activation energy with changingw0 with
Ea° ) 9 kcal/mol. The figure shows lines forw0 ) 60, 80, 100, 120,
140, and 160 kcal/mol.

Figure 9. Variations in the height of the intrinsic barrier for a series
of identity reactions as the average bond energyw0 changes. We
assumed thatVP is constant and allowedE

a
° to vary.

X′ + CH3X f XCH3 + X′ for

X ) F-, Cl-, Br-, and I- (16)

Figure 10. Variations innB
‡ the bond order for the bond that breaks

for the case in Figure 8.

Extension of the Marcus Equation J. Phys. Chem. A, Vol. 103, No. 35, 19997051



The Vp ) 0 case may seem a little strange, but if there are
no Pauli repulsions, then there will be nothing to keep the
reactants apart. In that case, the reactants can form a stable
complex. In this case there is no barrier to reaction.

One does not start to see an intrinsic barrier until the Pauli
repulsion is stronger than the bond energy:

so that no stable complex forms. At that point, there is a barrier
to the reaction and the intrinsic activation barrier increases
monotonically but nonlinearly asVp increases.

Physically, increases inVP correspond to increases in the steric
repulsions. Consider the homologous series of reactions:

where a proton is being transferred from nitromethane to a
hydroxyl. As methyl groups are added to the carbon center, the
steric repulsions increase.VP also increases. We have calculated
the activation energy for reactions 18-20 using a group
additivity postulate and found that the activation barrier for eq
20 will be higher than the barrier for reaction 18, even though
reaction 20 is more exothermic than reaction 18. Experimen-
tally,32 reaction 20 has a higher barrier than (18) even though
(CH3)CHNO2 is a stronger acid than CH3NO2.

In the literature, people have considered reactions 18-20
anomalous because the rate decreases as the reaction becomes
more exothermic; that is, the Brønsted slopes are negative.32

The model here predicts negative Brønsted slopes, in agreement
with the experimental data. Another feature of the model here
is that it predicts a nonlinear Brønsted plot.

The nonlinearity in Figure 11 occurs because the bonds stretch
to reduce the Pauli repulsions. Figure 12 shows how the Pauling
bond order at the transition state changes asVp increases. Notice
that the Pauling bond order at the transition state decreases as
the Pauli repulsions increase. According to the definition of the
Pauling bond order, a decrease in the Pauling bond order at the
transition state corresponds to a lengthening of the various bonds
in the transition state. Therefore, the implication of Figure 12

is that the bonds are lengthening as the Pauli repulsions increase.
Physically, as you increase the Pauli repulsions, the reactants
are forced apart and the transition state becomes looser.

Another implication of the model is that the Pauling bond
order is not conserved during the reaction. If bond order was
conserved, then the total bond order,nT, should be 1.0
everywhere along the intrinsic reaction pathway, where

Figure 13 shows a plot ofnT versusVp. Notice that whenVp )
0, a stable complex forms andnF

‡ ) nD
‡ ) 1 or nT

‡ ) 2.0. As
we increase the Pauli repulsions, the reactants are forced apart
andnT

‡ decreases. It happens that whenVp ) wF + wB the forces
balance so that bond order is conserved (i.e.,nT ) 1) over the
reaction coordinate. However, the activation barrier is zero in
such a case. WhenVp > wF + wB, the total bond order at the
transition state is less than 1 and Pauling bond order is not
conserved. Here, there is also a finite barrier to reaction.

One might think that the barrier arises because the total bond
order at the transition state is less than 1.0. However, Figure
14 shows how the total bond energy at the transition state,Ebond,

Figure 11. Variations in the intrinsic activation barrier,Ea°, as a
function of the strength of the Pauli repulsionVP, with w0 ) 95 kcal/
mol; R1 )R3 andR2 ) R4.

Vp > 2w0 (17)

CH3NO2+OH- f H2O + (CH2NO2)
- (18)

CH3CH2NO2 + OH- f H2O + (CH3CHNO2)
- (19)

(CH3)2CHNO2 + OH- f H2O + ((CH3)2CNO2)
- (20)

Figure 12. Variations innB
‡ the bond order at the transition state for

the case in Figure 11.

Figure 13. Variations innT, the total bond order of the system for the
case in Figure 11.

nT ) nF + nD (21)
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varies asVp changes. Notice that the total bond energy is
negative over the entire range in the figure. A negative value
of Ebond implies that the system gains more energy in partially
forming a modified bond than it loses in partially breaking the
original bond. As a result, bond extension does not produce a
net barrier. According to the model here, the barriers to reaction
arise because there are Pauli repulsions in getting the reactants
close enough to react. Bond stretching lowers these barriers,
which is the opposite effect compared to the intersecting
parabola model.

V. Comparison to the Intersecting Parabola Model

It is useful to compare the results here to those from the
intersecting parabola model.3-11 The intersecting parabola model
predicts Marcus-like behavior with an inverted region and a
parabolic rise in energy with increasing∆H. The data in Figure
2 does not show that trend. Instead, there is no inverted region
and a linear variation ofEA with ∆H at large∆H.

Physically, the intersecting parabola model predicts an
inverted region because the model assumes that the size of the
transition state is fixed. If you have a very exothermic reaction,
you get a curve-crossing before the minimum in the reaction,
as shown in Figure 15b, and that causes Marcus inverted
behavior.

The model in section II does not allow this inverted behavior
to occur. Instead, the transition state expands to give the situation
in Figure 15b. There is no barrier to reaction under this situation.

A similar effect occurs for very endothermic reactions. When
the reaction is very endothermic, the intersecting parabola model
predicts that the intersection of the two curves will be past the
product. However, the model here suggests that the transition
will expand again to compensate these effects. In this case,EA

) ∆Hr, and notEA > ∆Hr, as predicted by the intersecting
parabola model.

Generally, unlike the intersecting parabola model, the model
here predicts that the bonds can be extended if the bond
extension lowers the barriers to reaction. The intersecting
parabola model does not allow bonds to stretch, and so the
intersecting parabola model gives the wrong behavior for ligand
transfer reactions with large barriers.

In a more fundamental way, the model here differs from the
intersecting parabola model in that it identifies the barriers to
reaction with the Pauli repulsions between the reactants and
not the energy to stretch bonds. In recent papers,24-27 Blowers
and Masel examined the activation barriers for another set of

reactions of the form

Figure 16 shows how the activation energy correlates to the
bond stretching energy and the Pauli repulsion energy. Notice
that activation barriers correlate much better to the Pauli energy
than to the bond stretching energy. Thus, the model here agrees
with Blowers and Masel’s ab initio calculations.

The model also agrees in principle with Shaik’s valence bond
model,33-38 although there are some differences in detail.
Overall, the model agrees quite well with data as can be seen
in Figure 6.

VI. Summary

In summary then, the model here shows many of the trends
one expects. If there are no Pauli repulsions, then there are no
barriers to reactions. As one turns on the Pauli repulsions, the
barriers increase. However, there is a nonlinear effect because
the transition states become looser as the Pauli repulsions
increase, and the transition states become tighter as the bond
energy of the reactants increases. The tightening of the transition
state produces an unexpected effect. In some cases, it is easier
to break a strong bond than it is to break a weak bond. One can
also get negative Brønsted coefficients in cases with reactivity
where reaction 20 is slower than reaction 18, even though (CH3)-
CHNO2 is a stronger acid than CH3NO2.

The model is virtually indistinguishable from the original
Marcus equation when-1 e ∆Hr/4Ea° e 1. However, the

Figure 14. Total bond energyEtot for the case in Figure 11.

Figure 15. (a) Curve-crossing model in the inverted region. (b) The
corresponding situation based on the model here.

H + CH3OH f products (22)
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model predicts that the activation barrier goes to zero for very
exothermic reaction, approaches∆Hr for very endothermic
reaction, and varies nonlinearly in between. That trend seems
to agree with experimental data, ab initio calculations, and
Marcus’ hyperbolic cosine equation. The model also predicts
complex behavior with changing bond energy. Again, such a
trend seems to agree with both data and ab initio calculations.
In a larger way, the model suggests that the barriers to atom
transfer reactions are mainly associated with the Pauli repulsions.
In our previous ab initio calculations, we found that the barriers
to reaction are negligible in the absence of Pauli repulsions and
the magnitude of the barrier increases as the Pauli repulsions
increase. In a larger way, the model seems to extend Marcus’
original equation to very endothermic and very exothermic
reactions.
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Figure 16. Activation energies for reactions of the form in eq 22 as a function of the Pauli energy and the bond stretching energy. Results of
Blowers and Masel.24,26
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